WHU

Mercator Stiftungslehrstuhl für Demand Management & Sustainable Transport

Unsere Arbeit konzentriert sich auf die Entwicklung innovativer digitaler Technologien, um nachhaltigen Transport zu ermöglichen. Ein Schwerpunkt liegt dabei auf der Kombination von Demand-Management-Konzepten (z.B. dynamische Preisgestaltung oder Verfügbarkeitskontrolle von Dienstleistungen) und klassischem Transport-/Logistikmanagement (z.B. Routenoptimierung) zur Steigerung der Nachhaltigkeit.

Herzlich Willkommen am Mercator Stiftungslehrstuhl für Demand Management & Sustainable Transport.

Unsere Arbeit umfasst Planungs- und Steuerungsprobleme der urbanen Logistik, der Mobilität sowie des Luftverkehrsmanagements. Typischerweise umfassen diese Anwendungen Prognosemodelle, Modellierung von Kundenwahlverhalten, optimale Steuerung, großskalierte Optimierung und optimales Lernen. Wir entwickeln Lösungen in Zusammenarbeit mit verschiedenen Stakeholdern.

Prof. Dr. Arne Strauss auf Google Scholar

Unser Team

Jens Frische
Jens Frische
Wissenschaftlicher Mitarbeiter / Doktorand
Gideon Gottschalg
Gideon Gottschalg
Wissenschaftlicher Mitarbeiter / Doktorand
Vivien Schoepf
Vivien Schoepf
Wissenschaftliche Mitarbeiterin / Doktorandin
Dr Jan-Rasmus Künnen
Dr Jan-Rasmus Künnen

Lehre - Unser Kursangebot in 2023

Data Science for Business BSc

In diesem Kurs soll ein Gefühl dafür vermittelt werden, wie Analyseprojekte funktionieren, um sie managen und/oder ihren Nutzen beurteilen zu können.

Es handelt sich nicht um einen Modellierungskurs - obwohl wir uns mit Modellierung beschäftigen werden. Es ist auch kein Programmierkurs - obwohl wir in R viel programmieren werden (unterstützt durch DataCamp). Stattdessen dient die Modellierung und Programmierung nur zur Veranschaulichung der Schritte, die in typischen Analyseprojekten vorkommen. Dies soll bei der Planung eines solchen Projekts helfen, angefangen vom Verständnis des Geschäftsproblems über die Modellierung bis hin zur Modellbewertung und Kommunikation der Projektergebnisse (oder eines Projektvorschlags) an einen Kunden.

Es gibt keine klassische Trennung zwischen Vorlesungs- und Tutoriumssitzungen; stattdessen werden in allen Sitzungen Vorlesungselemente, praktische Demonstrationen und Übungen miteinander vermischt, um ein ansprechenderes Umfeld zu schaffen. In einer bewerteten Gruppenarbeit durchlaufen Sie alle Phasen eines datenwissenschaftlichen Projekts, einschließlich der Gestaltung der Geschäftsziele und der Verbindung der Modellierungsergebnisse mit diesen.

Wir werden auch Visualisierungskonzepte sowohl in der Theorie als auch in der Praxis behandeln, wobei wir für letzteres Tableau verwenden. Insbesondere werden wir uns mit dem Design von Dashboards, interaktiven Karten (wie die in Abb. 1 gezeigte) und Diagrammen sowie mit der Strukturierung von Verkaufsgesprächen befassen.

Der Lehrplan sieht wie folgt aus:

  1. Einführung in den CRISP-DM-Prozess (Geschäftsverständnis)
  2. Probenahme und Partitionierung (Datenaufbereitung)
  3. Informationsauswahl, Modellierung und Überanpassung (Modellierung)
  4. Bewertung des Modells
  5. Beweiskombination (Naïve Bayes, Association Mining) und Visualisierung
  6. Visualisierung, Dashboards, Verkauf Ihres Projekts an Endbenutzer
 
Pricing Analytics BSc

Example of an estimated win probability function used in B2B pricing

Pricing Analytics (Die Preisanalyse) und  Revenue Management (das Ertragsmanagement) konzentrieren sich darauf, wie ein Unternehmen die Nachfrage modellieren, automatisierte Preis- und Produktverfügbarkeitsentscheidungen über seine verschiedenen Vertriebskanäle festlegen und aktualisieren sollte, um seine Rentabilität zu maximieren. Der Einsatz solcher Strategien hat das Transport- und Gastgewerbe verändert, und sie werden im Einzelhandel, in der Telekommunikation, in der Unterhaltungsbranche, bei Finanzdienstleistungen, im Gesundheitswesen und in der Fertigung immer wichtiger.

Innerhalb des breiteren Bereichs der Preistheorie legt der Kurs den Schwerpunkt auf die taktische Optimierung von Preis- und Kapazitätszuweisungsentscheidungen, die mit Hilfe von Nachfragemodellierung und eingeschränkter Optimierung - den beiden Hauptbausteinen von Ertragsmanagementsystemen - angegangen werden.

Fallstudien vermitteln praktische Erfahrungen mit dem Thema. Die Teilnehmer verwenden R für die meisten Übungen innerhalb der RStudio-Umgebung, wobei sowohl die Nachfragemodellierung als auch Optimierungsprobleme behandelt werden. Im Kontext der kundenspezifischen B2B-Preisgestaltung untersuchen wir zum Beispiel die Frage, wie die Gewinnwahrscheinlichkeitsfunktion aus historischen Daten geschätzt werden kann und wie diese zur Optimierung individueller Preisangebote verwendet werden kann.

Der Lehrplan sieht wie folgt aus:

  1. Einführung, Kundenbewertungsspiel
  2. Nachfragemodellierung (parametrische, nicht-parametrische Modelle, nicht einschränkend)
  3. Eingeschränkte Preisoptimierung, Kapazitätskontrolle, Netzertragsmanagement
  4. Dynamische Preiskontrolle, (ungefähre) dynamische Programmierung
  5. Preisabschläge, verhaltensorientierte Preisgestaltung
  6. Angepasste B2B-Preisgestaltung, Schätzung der Gewinnwahrscheinlichkeitsfunktion
 
Sustainable Urban Transport BSc

In diesem Kurs geht es darum, ein Bewusstsein dafür zu schaffen, was derzeit im Bereich der nachhaltigen Mobilität und Transportlösungen geschieht. Darüber hinaus wird erörtert, wie innovative Geschäftsmodelle bewertet werden können, wie ihr Ökoeffizienz- und Nachhaltigkeitspotenzial bewertet werden kann, und es werden einige datengestützte Modellierungsansätze betrachtet, die zur Erreichung von Nachhaltigkeit beitragen.

Der Kurs enthält mehrere Fallstudien, um die Konzepte praxisnah zu veranschaulichen. Inhaltlich befassen wir uns mit Trends nach dem Covid 19, der Nachhaltigkeitsbewertung, grünen Fahrzeugen (Elektrofahrzeuge, gemeinsam genutzte Mobilität, autonomes Fahren), innovativen Logistikkonzepten und bedarfsgerechter Luftmobilität.

Modern Tools and Applications of Data Science- MSc

In diesem Kurs soll ein Gefühl dafür vermittelt werden, wie Analyseprojekte funktionieren, um sie managen und/oder ihren Nutzen beurteilen zu können.

Es handelt sich nicht um einen Modellierungskurs - obwohl wir uns mit Modellierung beschäftigen werden. Es ist auch kein Programmierkurs - obwohl wir in R viel programmieren werden. Stattdessen dient die Modellierung und Programmierung nur zur Veranschaulichung der Schritte, die in typischen Analyseprojekten vorkommen. Dies soll bei der Planung eines solchen Projekts helfen, angefangen vom Verständnis des Geschäftsproblems über die Modellierung bis hin zur Modellbewertung und Kommunikation der Projektergebnisse (oder eines Projektvorschlags) an einen Kunden.

Es gibt keine klassische Trennung zwischen Vorlesungs- und Tutoriumssitzungen; stattdessen werden in allen Sitzungen Vorlesungselemente, praktische Demonstrationen und Übungen miteinander vermischt, um ein ansprechenderes Umfeld zu schaffen. In einer bewerteten Gruppenarbeit durchlaufen Sie alle Phasen eines datenwissenschaftlichen Projekts, einschließlich der Gestaltung der Geschäftsziele und der Verbindung der Modellierungsergebnisse mit diesen.

Wir werden auch Visualisierungskonzepte sowohl in der Theorie als auch in der Praxis behandeln, wobei wir für letzteres Tableau verwenden. Insbesondere werden wir uns mit dem Design von Dashboards (und der Erstellung einiger weniger, wie in Abb. 1), interaktiven Karten und Diagrammen und der Strukturierung von Verkaufsgesprächen befassen.

Der Lehrplan sieht wie folgt aus:

  1. Einführung in den CRISP-DM-Prozess (Geschäftsverständnis)
  2. Probenahme und Partitionierung (Datenaufbereitung)
  3. Informationsauswahl, Modellierung und Überanpassung (Modellierung)
  4. Bewertung des Modells
  5. Beweiskombination (Naïve Bayes, Association Mining) und Visualisierung
  6. Visualisierung, Dashboards, Verkauf Ihres Projekts an Endbenutzer
  7. Tableau: Verwendung von Web-Datenkonnektoren, Aufruf von R aus Tableau heraus und andere fortgeschrittenere Themen
PTMBA - Data Science for Managers

Mit dem drastischen Anstieg des Einsatzes von Data Science in Unternehmen steigt auch der Bedarf an Managern, die die Grundlagen der Data Science kennen, um effektive Entscheidungen zu treffen: McKinsey schätzte, dass für jeden Datenwissenschaftler etwa 10 Manager mit diesen Fähigkeiten benötigt werden (da der Nutzen eines Data-Science-Teams in mehreren Bereichen des Unternehmens erzielt werden kann).
Dieser Kurs versucht, dieses Wissen zu vermitteln. Konkret geht es darum, ein Verständnis für Data Science zu vermitteln, das ausreicht, um ein kritischer Konsument von Data-Science-Lösungen zu werden. Sie werden die notwendigen Fähigkeiten erwerben, um die richtigen Fragen zu stellen, wenn Berater Data-Science-Projekte vorschlagen, und Sie werden in der Lage sein, besser mit internen Data-Science-Teams zu kommunizieren, da Sie verstehen, wie Data Scientists arbeiten. Das Ziel ist nicht, Sie zu einem Datenwissenschaftler auszubilden, sondern mit ihnen als Manager zu arbeiten.

Die folgenden Konzepte werden behandelt (praxisnah und fallbasiert):

  • Einführung in den branchenübergreifenden Standardprozess für Data Mining: vom Geschäftsverständnis über das Datenverständnis, die Datenaufbereitung, die Modellierung, die Auswertung bis hin zum Einsatz.
  • Datentypen und warum diese wichtig sind
  • Daten-Sampling und Partitionierung
  • Konzeptionelles Verständnis der wichtigsten Modelle des maschinellen Lernens für prädiktive Analysen (Entscheidungsbäume, lineare Klassifikatoren, ...)
  • Was ist ein gutes Modell? Bewertung und Visualisierung der Modellleistung
  • Datenwissenschaft und Unternehmensstrategie: Bewertung von Projektvorschlägen für Datenwissenschaft, Zusammenarbeit mit Datenwissenschaftlern
  • Visualisierungskonzepte, interaktive Karten und Dashboards: Theorie und Praxis mit Tableau

In dem Kurs wird R zur Veranschaulichung eines datenwissenschaftlichen Projekts verwendet, Programmierfähigkeiten ist kein Lernziel, daher ist das Erlernen der R-Programmierung völlig freiwillig. 

Fundamentals of Optimization – Doctoral Program

Optimierung ist für viele Anwendungen in der Wirtschaft wichtig, sei es im Finanzwesen, im Betrieb, im Marketing oder in anderen Bereichen. Ziel dieses Kurses ist es, einen breiten Überblick über die Konzepte zu geben, die der Optimierung zugrunde liegen, um den Studenten ein Verständnis dafür zu vermitteln, mit welcher Art von Optimierungsproblemen sie sich in ihrem Studium beschäftigen und wie diese angegangen werden könnten.

Die Abdeckung umfasst:

  • Struktur eines Optimierungsproblems
  • Deterministische versus stochastische Optimierung
  • Kontinuierliche versus diskrete Optimierung
  • Eingeschränkte versus uneingeschränkte Optimierung
  • Grundlegend wichtige Konzepte wie Konvexität, Dualität, Komplexität, totale Unimodularität, ...
  • Einführung in verschiedene Techniken einschließlich linearer und nichtlinearer mathematischer Programmierung, (ungefähre) dynamische Programmierung für Steuerungsprobleme, optimales Lernen

Wir werden nicht aus Zeitgründen zu tief in die Themen einsteigen, sondern der Schwerpunkt liegt auf der Vermittlung eines intuitiven Verständnisses von Optimierungstechniken und von ausnutzbaren Strukturen. Die Absicht ist es, diesen Kurs nützlich und relevant für alle Studenten zu machen, die mit irgendeiner Form von Optimierungsproblemen konfrontiert sind und die noch keine formale Ausbildung in Optimierung erhalten haben.

Data Science for Decision Makers

Der Nutzen, auf Basis von Daten bessere Entscheidungen zu treffen, liegt auf der Hand: "Wenn uns Daten vorliegen, sollten wir uns diese Daten ansehen. Wenn wir nur Meinungen haben, sollten wir uns auf meine verlassen." (Jim Barksdale, ehemaliger Präsident und CEO von Netscape)

Das WHU-Programm "Data Science for Decision Makers" vermittelt Teilnehmenden das notwendige Wissen für eine erfolgreiche Zusammenarbeit mit Datenwissenschaftlern. Ziel ist es nicht, die Teilnehmer:innen zu Datenwissenschaftlern auszubilden, sondern ein Verständnis für Datenwissenschaft zu entwickeln, was die Kommunikationsbarrieren zwischen Entscheidungsträgern und Datenwissenschaftlern reduziert. Sie lernen, wie man Daten mit Hilfe von Werkzeugen des maschinellen Lernens sinnvoll auswertet und wie man die Vorzüge von datenwissenschaftlichen Projektvorschlägen kritisch bewertet.

Nach erfolgreichem Abschluss des Programms erhalten Sie ein WHU Executive Education Certificate.

Für mehr lesen Sie hier

Unsere Publikationen

Supply Chain Management Group

Falkenberg, S., Spinler, S., Strauss, A. (accepted pre-print), An algorithm for flexible transshipments with perfect synchronization, European Journal of Operational Research.

Supply Chain Management Group

Petropoulos, F., Aktas, E., Sibel , A. A., Archetti, C., Ayhan, H., Battarra, M., Bennell, J. A., Boylan, J. E., Breton, M., Vanden Berghe, G., Canca, D., Charlin, L., Chen, B., Louis Anthony Cox, J., Currie, C. S. M., Demeulemeester, E., Ding, L., Disney, S. M., Ehrgott, M., Eppler, M., Erdogan, G., Fortz, B., L. Alberto, F., Frische, J., Greco, S., Hämäläinen, R. P., Herroelen, W., Hewitt, M., Holmström, J., Hooker, J. N., Isik, T., Johnes, J., Kara, B. Y., Karzu, Ö., Ken, K., Koch, T., Köhler, C., Kunc, M., Kuo, Y.-H., Laporte, G., Letchford, A. N., Leung, J., Li, D., Li, H., Ljubic, I., Lodi, A., Lozano, S., Lübbecke, M., Lurkin, V., Martello, S., Mchale, I., Midgley, G., Morecroft, J. D. W., Mutha, A., Ceyda , O., Petrovic, S., Pferschy, U., Psaraftis, H. N., Rose, S., Saarinen, L., Salhi, S., Song, J.-S., Stecke, K. E., Strauss, A., Tarhan, I., Thielen, C., Toth, P., Vasilakis, C., Vaze, V., Vigo, D., Virtanen, K., Wang, X., Weron, R., White, L., Woensel, T. V., Yearworth, M., Yildirim, E. A., Zaccour, G., Zhao, X. (accepted pre-print), Operational research: methods and applications, Journal of the Operational Research Society.

Supply Chain Management Group

Keskin, M., Branke, J., Deineko, V., Strauss, A. (2023), Dynamic multi-period vehicle routing with touting, European Journal of Operational Research, Vol. 310 (1), pp. 168-184.

Supply Chain Management Group

Künnen, J.-R., Strauss, A., Ivanov, N., Jovanovic, R., Fichert, F., Starita, S. (2023), Cross-border capacity planning in air traffic management under uncertainty, Transportation Science, Vol. 57 (4), pp. 999-1018.

Supply Chain Management Group

Schwamberger, J., Fleischmann, M., Strauss, A. (2023), Feeding the nation: dynamic customer contacting for e-fulfillment in times of crisis, Service Science, Vol. 15 (1), pp. 22-40.

Supply Chain Management Group

Künnen, J.-R., Strauss, A., Ivanov, N., Jovanovic, R., Fichert, F. (2023), Leveraging demand-capacity balancing to reduce air traffic emissions and improve overall network performance, Transportation Research Part A: Policy and Practice, Vol. 174, 103716.

Supply Chain Management Group

Künnen, J.-R., Strauss, A. (2022), The value of flexible flight-to-route assignments in pre-tactical air traffic management, Transportation Research Part B: Methodological, Vol. 160, pp. 76-96.

Supply Chain Management Group

Strauss, A., Gülpinar, N., Zheng, Y. (2021), Dynamic pricing of flexible time slots for attended home delivery, European Journal of Operational Research, Vol. 294 (3), pp. 1022-1041.

Supply Chain Management Group

Demirbilek, M., Branke, J., Strauss, A. (2021), Home healthcare routing and scheduling of multiple nurses in a dynamic environment, Flexible Services and Manufacturing Journal, Vol. 33 (1), pp. 253–280.

Supply Chain Management Group

Klein, R., Koch, S., Steinhardt, C., Strauss, A. (2020), A review of revenue management: recent generalizations and advances in industry applications, European Journal of Operational Research, Vol. 284 (2), pp. 397-412.

Supply Chain Management Group

Starita, S., Strauss, A., Fei, X., Jovanovic, R., Ivanov, N., Pavlovic, G., Fichert, F. (2020), Air traffic control capacity planning under demand and capacity provision uncertainty, Transportation Science, Vol. 54 (4), pp. 882-896.

Supply Chain Management Group

Ivanov, N., Jovanovic, R., Fichert, F., Strauss, A., Starita, S., Babic, O., Pavlovic, G. (2019), Coordinated capacity and demand management in a redesigned air traffic management value-chain, Journal of Air Transport Management, Vol. 75, pp. 139-152.

Supply Chain Management Group

Demirbilek, M., Branke, J., Strauss, A. (2019), Dynamically accepting and scheduling patients for home healthcare, Health Care Management Science, Vol. 22 (1), pp. 140–155.

Supply Chain Management Group

Kourentzes, N., Li, D., Strauss, A. (2019), Unconstraining methods for revenue management systems under small demand, Journal of Revenue and Pricing Management, Vol. 18 (1), pp. 27-48.

Hildebrandt, F. D., Lesjak, Z., Strauss, A., and Ulmer, M. W. (2022)

Integrated Fleet and Demand Control for On-Demand Meal Delivery Platforms

Kontaktieren Sie uns –

Wir freuen uns von Ihnen zu hören

Unser Standort

Mercator Stiftungslehrstuhl für Demand Management & Sustainable Transport
WHU – Otto Beisheim School of Management
D'Esterstraße 9
D-56179 Vallendar