Visual Data Analysis
A. Objectives and Focus of the course
“One Picture is Worth Ten Thousand Words” –this proverb is especially true in the case of Data Analysis. In business contexts, complex quantitative relationships are often ineffectively communicated because analysts underestimate the value of good data visualizations. In times of Big Data, almost every business professional, especially in management and consulting, is involved in Data Analysis.
This course aims at enabling students to visually analyze data and to effectively communicate their analytical results. In the first part of the course, examples from practical analytical use cases and scientific insights about visual perception and design lay solid foundations of Visual Data Analysis. Secondly, during a hands-on workshop, students learn how to use a professional Visual Data Analysis software. Finally, students apply what they have learned in a group project and practice their communication skills when presenting their results.
B. Structure of the course
1. Introduction
- Data Science and the importance of Visual Data Analysis
- Examples of actual use cases for Visual Data Analysis in practice
2. Foundations of Visual Data Analysis
- Requirements for Visual Data Analysis: skills, data, software
- Types of quantitative relations within data and how to best visualize them: time-series, distribution, correlation, etc.
- Visual perception: and what we can learn from science on how to communicate using visualizations
- When and how to effectively use visual attributes (length, position, size, color, shape, …)
- Analytical relationships and patterns
3. Workshop: Visual Data Analysis using Tableau
This partis a practical workshop using the software Tableau. Students learn how to effectively use a professional Data Visualization software. This includes the following topics:
- Connecting with your data
- Analytical interaction and navigation
- Analyzing typical relationships and patterns (using, for example, bar charts, line charts, geographic heatmaps, scatter plots, …)
- Best practices for Visual Design
- Calculations
- Building interactive dashboards
4. Case studies / group work
In the final part of the course, students work in groups on different case studies. The groups create Dashboards for Visual Data Analysis using the software Tableau applying the theoretical and practical skills from the first two parts of the lecture. The results are presented and discussed in the final session.
Date | Time |
---|---|
Friday, 11.11.2022 | 08:00 - 15:15 |
Friday, 18.11.2022 | 08:00 - 15:15 |
Friday, 25.11.2022 | 08:00 - 15:15 |
Saturday, 10.12.2022 | 09:45 - 17:00 |
Grading is based on the following components:
- Mid-term exam: 30%
- Group work / presentation: 70% (with peer feedback)